Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(797): eade0385, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552767

RESUMO

Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-ß (transforming growth factor-ß) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-ß increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-ß-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-ß receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-ß is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.


Assuntos
COVID-19 , Sepse , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Lipopolissacarídeos/toxicidade , COVID-19/metabolismo , Macrófagos/metabolismo , Sepse/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Glicólise
2.
Sci Immunol ; 8(80): eadd4132, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827419

RESUMO

Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.


Assuntos
Linfócitos T CD4-Positivos , Regulação da Expressão Gênica , Camundongos , Animais , Humanos , Linfócitos T CD4-Positivos/metabolismo , Apresentação de Antígeno , Células Th17/metabolismo , Células Cultivadas , Células Dendríticas , Antígenos de Superfície , Glicoproteínas de Membrana
3.
J Exp Med ; 216(3): 638-655, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30765463

RESUMO

T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the ß-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their ß-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through ß-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before ß-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of ß-selection by inducing apoptosis in cells with a nonfunctional rearrangement.


Assuntos
Proteínas de Homeodomínio/metabolismo , Linfócitos T/fisiologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/citologia , Timo/citologia , Fatores de Transcrição/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
4.
Front Immunol ; 9: 2258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364182

RESUMO

Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage-, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Interleucina-7/imunologia , Células Progenitoras Linfoides/imunologia , Proteínas de Membrana/imunologia , Células-Tronco Multipotentes/imunologia , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...